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Cyclostationary Analysis
of a Faulty Bearing
in the Wind Turbine
Bearing faults occur frequently in wind turbines, thus resulting in an unplanned down-
time and economic loss. Vibration signal collected from a failing bearing exhibits modu-
lation phenomenon and “cyclostationarity.” In this paper, the cyclostationary analysis is
utilized to the vibration signal from the drive-end of the wind turbine generator. Fault
features of the inner and outer race become visible in the frequency–cyclic frequency
plane. Such fault signatures can not be produced by the traditional demodulation meth-
ods. Analysis results demonstrate effectiveness of the cyclostatonary analysis. The disas-
sembled faulty bearing visualizes the fault. [DOI: 10.1115/1.4035846]
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1 Introduction

The rapid expansion of wind energy has elevated the impor-
tance of reliability of wind turbines. To guarantee power quality
and reduce maintenance cost, health monitoring systems have
been introduced for monitoring conditions of critical subassem-
blies of wind turbines and diagnosing faults [1–3].

Bearings support revolving shafts in the gearbox and generator
of a wind turbine. The bearing at the drive-end of the generator is
the most fragile [4,5] as it is affected by the alternating loads
caused by the fluctuation of power, shaft corrosion, and the elec-
tromagnetic excitation. In addition of these factors, any misalign-
ment between the high speed shaft of a gearbox and the generator
shaft may lead to the bearing failure. Shaft misalignment is usu-
ally caused by temperature variation or looseness of the founda-
tion bolt.

Different approaches have been developed to detect bearing
faults in wind turbines. Watson et al. [6] applied wavelets to

analyze the frequency components of the power series. They
derived fault characteristics of the generator bearing. Kusiak and
Verma [7] used historical temperature measurements to develop a
neural network model predicting over-temperature faults of a
bearing. Yang et al. [8] established a relationship between the
bearing temperature and active power, and derived a fitting coeffi-
cient describing different fault levels. The cited above results
have been derived based on the data collected by the supervisory
control and data acquisition (SCADA) system, thus, avoiding
additional hardware and software cost associated with the need to
collect vibration data. However, the SCADA data does not suffice
to locate a concrete bearing fault.

To date, vibration analysis remains the primary method to diag-
nose bearing faults. The cost of the acquisition system is compen-
sated by the ease of fault analysis. Using vibration data, Antoni
and Randall [9] determined the optimal demodulation frequency
band of a faulty bearing with spectral kurtosis. Autoregressive
model and minimum entropy deconvolution can restrain the peri-
odic components from the gear mesh and background noise
[10,11]. Both were adopted to evidence the impacts of fault bear-
ing in a vibration signal. Randall et al. [12] presented cepstrum
prewhitening to eliminate the deterministic components in the
cepstrum domain, and applied it to diagnose bearing faults under
variable speed conditions [13]. Rai and Mohanty [14] used the
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fast Fourier transform (FFT) and the Hilbert–Huang transform
(HHT) to demonstrate a bearing fault using the nonstationary
properties of HHT. Park et al. [15] proposed the minimum
variance-based cepstrum for early fault detection in automotive
ball bearings. Teng et al. [16] utilized the complex Morlet wavelet
to demodulate vibration signals from the direct drive wind turbine
and detect roller defects of the rear bearing.

The emerging bearing fault reflects itself in the modulation phe-
nomenon known as the second-order cyclostationarity [17,18].
Therefore, the second-order cyclostationary analysis is regarded
as an effective tool for processing the vibration signal associated
with a bearing fault. Gardner [19–21] described the foundation of
cyclostationary analysis, and proposed important concepts such as
spectral correlation and spectral redundancy. Antoni [22–24]
adopted the theory of cyclostationary analysis to fault diagnosis of
mechanical systems, e.g., a diesel engine, a hydraulic pump, and a
gearbox.

To arrive at pure cyclostationarity, Raad et al. [25] computed
high order cyclic cumulants, thus, excluding the interference from
lower order statistics. However, computing cyclic cumulants is
time-consuming for a long data series. The vibration signals from
faulty bearing in wind turbine generator represent second-order
cyclostationarity, which was not considered in the past research
on diagnostic of wind turbines [26,27]. The moment-based cyclo-
stationary analysis can detect this cyclostationarity caused by
faulty bearing, and it is highly efficient. In this paper, the cyclosta-
tionary analysis based on cyclic moment is applied to analyze the
vibration signal originated from a faulty bearing located at the
drive-end of a generator. In Sec. 2, the structure of a wind turbine
drive train is described, the offline vibration monitoring system is
introduced, and the fault feature frequencies are discussed. In Sec.
3, the theoretical aspects of cyclostationary analysis are referred.
An operating 1.5 MW generator with a faulty bearing is tested and
analyzed in Sec. 4. The disassembled bearing visualizes the bear-
ing fault. Section 5 concludes the paper.

2 Wind Turbine Generator

2.1 Wind Turbine Drive Train. Wind turbines fall into two
categories: direct-drive turbines (DDT) and turbines with gear-
boxes. The direct-drive turbines use full energy conversion pro-
duced by synchronous generators. The turbine equipped with a
gearbox (see Fig. 1) usually uses a double-fed induction generator
(DFIG). Such generator calls for partial energy conversion. The
bearing at the drive-end of the generator is prone to failures due to
a misalignment between the generator shaft and the high-speed
shaft of the gearbox, shaft imbalance, or the distortion due to ther-
mal expansion.

Vibration analysis is frequently applied in the detection of gear
and bearing faults. There are seven acceleration transducers
installed at the drive train of the wind turbine in Fig. 1. Transducer
1 monitors the blades and the front main bearing. Transducers 2
through 7 sense the signal from the rear main bearing, planetary
stage, intermediate stage, high speed stage of gearbox, bearing at
drive-end, and bearing at the non-drive-end of the generator,

respectively. In this paper, the vibration signal from transducer 6
will be analyzed and discussed.

2.2 Bearing Fault Features. Rolling bearing is a rotating
subassembly composed of an inner race, outer race, rolling ele-
ments, and a cage. Due to the relative rotation between the rolling
elements and other parts, a bearing defect generates periodic
impulses. When a fault arises on the inner race of a bearing, the
frequency of the impulses from the balls and the inner race is
called the ball pass frequency of inner race (BPFI). Similarly, the
frequency of the impulses from the balls and the faulty outer race
is called the ball pass frequency of outer race (BPFO), the fre-
quency caused by the faulty ball striking other parts is called ball
spin frequency of rolling element (BSF), the frequency of the
impulses from the balls and the faulty cage is called fundamental
train frequency (FTF). BPFI, BPFO, BSF, and FTF are computed
from expressions (1)–(4), respectively [16,24]

BPFI ¼ frNb

2
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where fr is the rotational frequency of the shaft assembled with
inner race, d is the ball diameter, D is the pitch diameter, Nb is the
number of the balls, and u is the bearing contact angle; u is the
angle between the normal through the contact points and the line
perpendicular to the axis line of the bearing. The structure of ball
bearings is shown in Fig. 2.

3 Cyclostationary Analysis

If the statistics of vibration signal x(t) are periodic, x(t) is
regarded as cyclostationary. Take the nth-moment Mnxðt; s1;…;
sn�1Þ ¼ EfxðtÞxðt� s1Þ…1xðt� sn�1Þg with a cyclic period T

Fig. 1 Structure of wind turbine drive train
Fig. 2 Structure of ball bearings: (a) angular contact ball bear-
ing and (b) deep groove ball bearing
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for an example, it can be expressed in the cyclic frequency
domain as the Fourier series [25] in the below equation

Mnxðt; s1;…; sn�1Þ ¼
X

a

Ma
nxðs1;…; sn�1Þ ej2pat (5)

where a is defined as cyclic frequency, s1;…; sn�1 are time lags
and Ma

nxðs1;…; sn�1Þ is nth-order cyclic moments. At different
orders, they are expressed in Eqs. (6)–(9)
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Gears and bearings are symmetric, and therefore, their vibration
signal exhibits the first-order cyclostationary characteristic. More-
over, once a gear or a bearing becomes affected by a fault, there
are inevitable modulation components in the vibration signal
whose second-order moment is periodic [17,18]. Therefore, the
second-order cyclostationary analysis is useful in the detection of
gear and bearing faults.

The second-order instantaneous moment of the vibration signal,
also called the instantaneous auto-correlation function with sym-
metry structure is defined in the below equation

M2x t; sð Þ ¼ E x tþ s
2

� �
x� t� s

2

� �� �
(10)

where s is time lag, and x* is the complex conjugate of x. Substi-
tuting the expectation operation in expression (10) with the mean
value during the finite sampling range T, the second-order cyclic
moment in expression (7) can be rewritten as shown in the below
equation
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where the hit denotes the inner product operation. The second-
order cyclic moment above can be transformed to the cyclic spec-
trum density using Fourier transform in the frequency domain as
shown in the below equation

Sa
2xðf Þ ¼

ð1
�1

Ma
2xðsÞe�j2pf sds (12)

To estimate the cyclic spectrum density using finite time series,
the second-order cyclic moment [28] is rewritten according to the
below equation

Ma
2x sð Þ ¼ u tþ s

2

� �
v� t� s

2

� �� �
t

(13)

where

uðtÞ ¼ xðtÞe�jpat

vðtÞ ¼ xðtÞejpat

�
(14)

The relationship between the correlation function and convolution
[28] is shown in the below equation

Ma
2xðsÞ ¼ uðsÞ � vð�sÞ (15)

where * denotes the convolution operator. Therefore, the cyclic
spectrum density can be estimated from the below equation

Sa
2x fð Þ ¼ lim

T!1

U fð Þ � V� fð Þ
T

(16)

where

U fð Þ ¼ F u tð Þ½ � ¼ X f þ a
2

� �

V fð Þ ¼ F v tð Þ½ � ¼ X f � a
2
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8>>><
>>>:
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V�ðf Þ is the conjugate of Vðf Þ; F denotes the Fourier transform
operator; and X(f) is the Fourier transform of x(t).

The cyclic coherence function (CCF) that measures the strength
of cyclostationarity at cyclic frequency [23] is defined in the
below equation

Ca
2x fð Þ ¼ U fð Þ � V� fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 fð Þ � V2 fð Þ
p (18)

The structure of the second-order cyclic moment in expression
(11) is similar to the short time Fourier transform (STFT) if the
auto-correlation function is substituted by a windowed signal, and
cyclic frequency a is substituted by frequency f. The STFT [29] is
defined in the below equation

STFTðs; f Þ ¼
ð1
�1

xðtÞh�ðt� sÞe�j2pftdt (19)

As a variant of Fourier transform, STFT is invented to analyze
nonstationary signal whose frequency varies in a short time. It is
troublesome for STFT to reveal the fault information because the
fault frequency is usually convoluted by carrier frequency. More-
over, the frequency resolution in STFT is rough due to the handful
of data in a windowed signal. By contrast, the second-order cyclic
moment in expression (11) can obtain the cyclostationarity of
faulty bearing directly through computing the Fourier transform
of auto-correlation function in cyclic domain.

4 Case Study

4.1 Testing Conditions. The rated power of the wind turbine
studied in this research is 1.5 MW. The corresponding rotational
frequency of the generator is of about 30 Hz. The offline vibration
analysis was performed twice a year on the turbine. Two different
testing conditions were adopted. At condition C1, the rotational
frequency of the generator was 28.13 Hz, and the frequency was
24.84 Hz at C2 when the test was carried on 6 months earlier. The
sampling frequency was 25,600 Hz. The damaged bearing at the
drive-end of the generator was 6330 C3 SKF. According to

Table 1 Bearing feature frequencies at the drive-end of the
generator

fr FTF BSF BPFO BPFI

Ratio to fr 1 0.399 2.37 3.59 5.41
Feature frequency at C1 28.13 11.22 66.67 100.98 152.18
Feature frequency at C2
(6 months earlier)

24.84 9.91 58.87 89.17 134.38
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Fig. 3 Time signal at the drive-end of a generator: (a) time signal, (b) power spectrum,
(c) envelope spectrum in the band 1000–3000 Hz, and (d) envelope spectrum in the band
5000–6500 Hz

Fig. 4 Cyclic coherence function of the vibration signal
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expression (1)–(4), the feature frequencies under the two condi-
tions are listed in Table 1.

4.2 Test Results. A routine inspection has determined that
the vibration level at the drive-end of the generator exceeded the
VDI 3834 standard [30] value, as shown in Fig. 3(a). Figure 3(b)
represents the corresponding power spectrum with the vibration
energy concentrated in frequency bands from 1000 to 3000 Hz,

and from 5000 Hz to 6500 Hz. A conventional approach for
detecting bearing fault is to filter resonance frequency bands that
may hide fault information, and get an envelope signal from
demodulation analysis, e.g., Hilbert transform. The fault informa-
tion can be evidenced by the analysis of the envelope spectrum
(the Fourier transform of the envelope signal). Here fourth-order
Butterworth band pass filters are designed to filter the original
vibration signal at the above two frequency bands, and the enve-
lope spectra of the filtered signal are shown as in Figs. 3(c)

Fig. 5 Slice of CCF of the vibration signal at f 5 9000 Hz

Fig. 6 Slice of CCF of the vibration signal at f 5 3500 Hz
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and 3(d). The rotational frequency 28.13 Hz of the generator is
evident. This may indicate an imbalance or a misalignment
between generator’s shaft and the high-speed shaft of the gearbox.
In Figs. 3(c) and 3(d), there are components of 101.6 Hz (the sec-
ond harmonic 203 Hz, the third harmonic 305 Hz) and 151.2 Hz
(the second harmonic 302 Hz) present that are close to BPFO and
BPFI in the third row of Table 1. These components may point to
a fault on the inner or outer race of the bearing at the drive-end of
generator. However, compared with the vibration amplitude of the
rotational frequency (28.13 Hz) of the shaft, those of the BPFO
(101.6 Hz) and BPFI (151.2 Hz) are weaker and can easily be
ignored.

To explore possible faults of the bearing, the second-order
cyclostationary analysis is adopted to process the original signal
and the cyclic coherence function shown in Fig. 4. Besides of the
rotational frequency of 28.13 Hz, there are regular intervals of
100.6 Hz and 152.6 Hz along the direction of the cyclic frequency
axis in Fig. 4.

To improve computational efficiency of the cyclostationary
analysis, the frequency resolution is low, and the resolution of
cyclic frequency is high. All fault information is reflected in the
cyclic frequency. Cyclic coherence function provides a three-
dimensional representation in f–a plane for the vibration signal.
The prominent components in CCF indicate their cyclostationar-
ity, and therefore, each of them needs to be considered. By

directly scanning the CCF, the fault modulation information along
a axis can be detected. To find an optimal frequency that can slice
the CCF to make an excellent exhibition of the fault feature, a
ratio Cðf Þ between the amplitude (CaF

2xðf Þ) of the BPFI (or BPFO,
denoted by aF) and the one (Car

2xðf Þ) of the rotational frequency
denoted by ar is defined as Cðf Þ ¼ CaF

2xðf Þ=Car
2xðf Þ. The frequency

corresponding to the maximal Cðf Þ is regarded as the optimal slice
frequency.

From Fig. 4, BPFO (100.6 Hz) and its harmonics are concen-
trated at the frequency range from 8000 Hz to 10,000 Hz. And
BPFI (152.6 Hz) and its harmonics are in the range from 2200 Hz
to 4000 Hz. Figure 5 shows the optimal silce of CCF at
f¼ 9000 Hz pointing to the BPFO feature frequency. At the same
time, the silce of CCF at f¼ 3500 Hz in Fig. 6 indicates the feature
frequency of BPFI. The above phenomena point to a fault at the
inner and outer race of the bearing. The disassembled bearing
from the drive-end of the generator in Fig. 7 confirms the diagno-
sis result.

The test data collected 6 months earlier from the same genera-
tor were used to validate the capability of cyclostationary analysis
in detection of a faulty bearing. The original signal collected ear-
lier is shown in Fig. 8(a) with the rotational frequency of the gen-
erator shaft of 24.84 Hz. The corresponding power spectrum is
shown in Fig. 8(b). Similar to Fig. 3(b), the vibration energy con-
centrates in frequency band from 1000 to 3000 Hz, and from
5000 Hz to 6500 Hz. Figures 8(c) and 8(d) show the envelope
spectra of the filtered signal at different frequency bands. Besides
the rotational frequency (25 Hz and its harmonic) of the shaft,
269.5 Hz is evident, which is about twice the BPFI (134.38 Hz
under condition C2). These phenomena illustrate that certain
defects arose on the inner race of the bearing at that time. How-
ever, the BPFI itself is weak, and the BPFO does not appear in
Figs. 8(c) and 8(d) comparing with Figs. 3(c) and 3(d), which
demonstrate the enveloping demodulation analysis could not be
effective.

The vibration signal in Fig. 8(a) collected 6 months earlier is
processed by cyclostationary analysis. Its cyclic coherence func-
tion is shown in Fig. 9 where the BPFO intervals 89.8 Hz and
BPFI 134.5 Hz are evident, coinciding with the feature frequency
in the last row of Table 1. The slices at f¼ 9000 Hz and
f¼ 10,000 Hz in Figs. 10 and 11 illustrate the fault features. The
CCF from Figs. 9–11 illustrate that the bearing fault has emerged
6 months ago. Actually, this diagnosis was drawn at that time.
However, since the fault hazard was not adequately assessed, the
generator continued to operate, the faulty bearing had not been
replaced until the later test at condition C1.

4.3 Comparison With Other Methods. To demonstrate the
cyclostationarity of a faulty bearing in wind turbine generator,
three methods of signal processing have been applied to compare
the results from Figs. 9–11.

4.3.1 The Empirical Wavelet Transform. The empirical wave-
let transform [31] is proposed to overcome the lack of theory of
empirical mode decomposition. It can adaptively decompose sig-
nals into different modes by constructing multiple band-pass fil-
ters with parameters originating from the maxima in the
frequency spectrum. Chen et al. [26] applied the empirical wave-
let transform to detect a bearing fault of a wind turbine generator.
Here, empirical wavelet transform is implemented based on the
vibration signal in Fig. 8(a). The maximum number of frequency
bands is set to three because three frequency bands can make a
compromise between redundant detection and a good separation
in power spectrum in this context. The result is shown in Fig. 12
where the left column illustrates the decomposed temporal modes,
and the right column shows the corresponding envelope spectra.
In mode 1, 89.84 Hz representing the BPFO is evident. The domi-
nant frequency is 25 Hz in mode 2 and 3, which denotes the rota-
tional frequency of shaft of the generator. In mode 3, there are
134.4 Hz and its second harmonic denoting the BPFI. Although

Fig. 7 Disassembled bearing at the drive-end of the generator
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Fig. 8 Time signal 6 months earlier: (a) time signal, (b) power spectrum, (c) envelope
spectrum in the band 1000–3000 Hz, and (d) envelope spectrum in the band 5000–6500 Hz

Fig. 9 Cyclic coherence function of the vibration signal 6 months earlier
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the BPFO is detected in mode 1 and the BPFI is detected in mode
3, they are less obvious than the slice of CCF in Fig. 10.

4.3.2 Morlet Wavelet Transform and Wigner–Ville Distribu-
tion. Tang et al. [27] adopted Morlet wavelet transform to denoise
vibration signals and combined Wigner–Ville distribution to get a
fault feature in time-frequency domain. The approach was verified
in a wind turbine test-bed. Here, we used this approach to

compare its performance with the second-order cyclostationary
analysis.

First, the vibration signal 6 months earlier (see Fig. 8(a)) is
processed based on the continuous Morlet wavelet transform
shown in Fig. 13. The result illustrates that the effective frequen-
cies are concentrated at the range from scale 6 to 11. Then, scale 9
is selected as the optimal parameter to filter the vibration signal.
Using the smoothed pseudo Wigner–Ville distribution for the

Fig. 10 Slice of CCF of the vibration signal 6 months earlier at f 5 9000 Hz

Fig. 11 Slice of CCF of the vibration signal 6 months earlier at f 5 10,000 Hz
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filtered signal, the time-frequency representation is shown in Fig.
14 where only 0.04 s (25 Hz) denoting the rotational frequency of
the shaft of the generator is distinct. The BPFI and BPFO do not
appear. Performance of the second-order cyclostationary analysis
is superior to the wavelet transform combined with Wigner–Ville
distribution in detecting the bearing fault in wind turbine
generator.

4.3.3 Short Time Fourier Transform. Short time Fourier
transform is a time-frequency tool [29] to find the varying

frequency in nonstationary signal. Window functions are used to
separate the original signal into several parts, and the correspond-
ing Fourier transforms are calculated. All the results from Fourier
transforms are combined to form the time-frequency representa-
tion. Here, the length of window is 16,384 to make a compromise
between the calculating efficiency and frequency resolution.
Figure 15 is the STFT of the original signal 6 months earlier.

In Fig. 15, we can see the frequency components keep consist-
ent, which demonstrates the wind turbine generator operated
under a constant speed during the test. The vibration energy

Fig. 12 Decomposed modes of empirical wavelet transform using the vibration signal 6
months earlier

Fig. 13 The result produced by the continuous Morlet wavelet transform for the
vibration signal 6 months earlier

Journal of Solar Energy Engineering JUNE 2017, Vol. 139 / 031006-9

Downloaded From: http://solarenergyengineering.asmedigitalcollection.asme.org/ on 02/09/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



concentrates on about 2300 Hz in time-frequency plane. The slice
between 2000 Hz and 2800 Hz at t¼ 1 s is shown in Fig. 16. We
can evidently see the frequency components 2068 Hz, 2158 Hz,
2248 Hz, 2338 Hz, and 2428 Hz with an interval 90 Hz denoting
the BPFO. Also 2266 Hz, 2291 Hz, and 2316 Hz are manifested,
with an interval 25 Hz denoting the rotational frequency of the
shaft of the generator. Although the feature of the faulty bearing is
detected using STFT, it still need an individual to identify the

modulated sideband, thus is less direct than the cyclostationary
analysis in Fig. 9.

4.4 Discussion. Observing the faulty bearing in Fig. 7, there
are obvious traces of the current corrosion on the inner race
caused by electric discharge of rotating parts. This is rather com-
mon phenomenon that may originate from the asymmetric

Fig. 14 Smoothed pseudo Wigner–Ville distribution of the filtered signal

Fig. 15 Short time Fourier transform of the original signal 6 months earlier
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magnetic flux leakage, shaft eccentricity, or distorted grid current.
Ground connection and proper lubrication of bearings are used to
minimize discharge.

5 Conclusion

The research reported in the paper has demonstrated that cyclo-
stationarity is a valuable characteristic in the analysis of bearing
faults in the generator of a wind turbine. The second-order cyclo-
stationary analysis was applied to the vibration signal from an
industrial 1.5 MW wind turbine generator. The distinct fault fre-
quency of the inner and outer race of a bearing was extracted.

The same analysis performed on the data collected 6 months
earlier indicated emergence of the bearing fault at that time, which
showed the ability of cyclostationary analysis to detect an incipi-
ent bearing fault. The diagnosis results were visualized with the
disassembled bearing of a generator.
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